Défis actuels de la finance : nouvelles approches théoriques et gestion des risques bancaires et financiers

CEPN – LAGA Université Paris 13

Quelques réflexions sur le risque de modèle

13 Novembre 2009

Frank Taïeb

A. Modeling within financial institutions

- **B.** Selected topics
- C. Model risk drivers
- D. Internal governance and risk model management
- E. Challenges
- F. References

MODELING AS PART OF DIFFERENT DECISION MAKING PROCESSES (1)

MODELING AS PART OF DIFFERENT DECISION MAKING PROCESSES (2)

□ SHORT TIME TO LONG TERM HORIZON :

Real time pricing and hedging

□Long term credit financing

□ ALM models and Balance sheet for long term financing strategies

□ FINANCIAL INNOVATIONS

Product complexity
Market interaction and growth
Increasing competition

STRATEGIC DECISIONS IMPACTS

Financial markets : Pricing ,mark to market and hedging / P&L strategies
Regulatory capital : RWA and Regulatory Capital / Leverage and deleveraging

Mathematical

Data intensive

□ Subjectivity

Comprehensiveness

Limitations

□ MODELS INTRINSIC FRAGILITY

□Over engineering

Data complexity

□Non stability

□ Major assumptions (Efficient Markets, ../..) breakdown within crisis

Capability to model

Example # 1 / Credit and market risks frontiers for derivatives exposure measurement

Given the second second

- Stochastic Potential Future Exposures measurement for OTC derivatives
- Asset and liquidity assumptions for risk horizon and delay to replace defaulted transactions
- Default risk measures through market based prices , spreads, equity
- Integration of risk capital in economic capital measurement and stress testing : proxys and correlation assumptions
- □ Selected assumptions review :
- Correlation between default and exposure value (« Wrong way exposures »)
- Correlation between market risk drivers and credit risk drivers for joint loss distribution
- Risk Neutral versus Real Risk models :
 - Multifactor Stochastic diffusion model "trends" (real world versus neutral risk) is highly sensitive for potential future exposure levels (upwards or downwards shifts);
 - Valuation models assumptions;
- Liquidity assumptions

Transaction credit terms and portfolio devices :

- Risk mitigation contract terms integration leading to collateral valuation margin calls and deposits
- Implied options within derivatives contracts (see portfolio break clauses embedded within bilateral agreements,..)

Example # 2 / Portfolio credit models

□ Issue : credit losses measurement for large scale portfolio of assets and credits

□ "Convergence" of market standards hence most of the "devil" lies in assumptions

Assumptions leading to key choices :

➤Losses measurement and valuation :

Mark to loss

Mark to market

Mark to model

➢ Risk horizon and asset liquidity

> « Through the Cycle » or « Point in Time » for credit ratings and default probabilities (see consequences for pro cyclicality)

Risk drivers modeling assumptions

Default model and rating transitions

➤Correlation model choice and calibration

≻Other dependencies

Default risk and exposure at default

Recovery rates and default risk (« Downturn LGD »)

Contingent risk model for credit guarantees, CDS, etc

Transaction specificities integration (classical financing loans, complex structures, retail pools, derivatives

□Portfolio dynamics integration over long time period horizon

Example # 3/ Data modeling issues

Diversity of data : Market data > Benchmark ➢ Internal collection – see Basel 2 Pillar 1 - , ../.. Distribution law models : EVT / Non Normal "Extreme" laws may bring "solutions" to the limits of standard assumptions (normal, log normal, etc), several difficulties : >Limited size of samples for correct fitting; non capability to perform validation tests > Robustness through time of models Complexity for correlations Adoption by Competitive & complete market Past and future : □ Model capability to reflect the past and reflect the potential futures outcomes Implied probabilities for model results □ Major breakdowns and rupture integration in models Non observable factors

Example #4 / Metrics, probabilities and scenario based approaches/practices(1)

□ Probability/distribution based approaches leads to different metrics :

- "Body based" distribution indicators : standard deviation and average
- Tail indicators : VAR, Conditional Tail VAR / Expected Shortfall

They are key to understand/capture the patterns of the risk providing the fact that the input are correctly modeled

□ Multi criteria analysis is necessary but may be considered as "too complex", **but** "unique" sets of indicators is generally not sufficient to summarize complete information

Probabilistic approaches & metrics properties :

- Normative due to standardization of metrics *for identical* confidence interval level
- Coherent should they satisfy coherent risk measure axiomatic

□ Risk allocation remains a complex issue :

- Correlation and interdependencies effect across sub portfolio / business unit
- Accuracy of measures at granular levels
- Consistency between global metrics and metrics displayed at sub portfolio/business unit

Additivity

- Incentives and criteria to adopt between :
 - Variance based allocation to reflect "specific" firm risk
 - Tail based allocation to reflect "systemic risk"

Example # 4 / Metrics, probabilities and scenario based approaches (2)

C Scenario based approaches / stress testing *are complementary* to full probabilistic modeling

□ Range of practices covers

- Different set of scenarios (Historical, Hypothetical, Adverse)
- Potentially larger integration of experts (scenario definition,
- More complex are "reverse back" stress test (identify the scenario leading to a XX M EUR Loss ? or finding set of parameters maximizing portfolio loss) due to the large number of risk/business drivers

Consistency with probabilistic methodologies :

- Stress test measurement could either focuses on P&L volatilities or "extreme events"
- Since "Extreme events" are captured by capital models at high level of confidence, consistency needs to be achieved between capital models and stress tests severity
- Stress test severity measurement needs to be discussed together with the corresponding "frequency" rate (see economic based hypothetical scenario or aggregation of stress losses for different scenarios)
- "Buy In" Issues
- Comprehensive approaches
- Credibility could be an issue ("unrealistic" assumptions, amounts of losses, discussion points concerning the subjective perception of assumptions and results)
- Needs to be integrated into Risk/Business lines decision management schemes
- Both practices needs to be used :
- Consistency is necessary
- Conditional loss stress testing as a further step

MODEL RISK HAS SEVERAL DIMENSIONS

□ MODEL CAPABILITY TO REPRESENT COMPLEXITY

□ MODEL THEORETICAL FRAMEWORK RELEVANCE

MODEL MISSPECIFICATION

□INADEQUATE ASSUMPTIONS

□ MODEL PARAMETER ERROR CALIBRATION

□ DISCREPANCY BETWEEN PRICING AND HEDGING

□ MODEL OVERALL RESULTS INADEQUACY

Gerror in Implementation

UNABILITY TO BACKTEST

□../..

MODEL RISK MANAGEMENT PRACTICES AND MITIGATION

□ Validation assumptions

□ Measuring model risk :

Back testing

□Sensitivity analysis

□ Measure of parameters errors

□ Measure of models errors

Deasure of non appropriateness of values and results

□Internal governance

□ implement permanent supervisory for control and validation

□Independence from developing entities

Integration of different know how ("quants", operational experts, and senior management,)

Decision tracking process

□Senior management buy in

□ Risk model « hedging » and pricing

□ Price integration

□P&L reserves

Capital charge (Add on ; example of EL vs Provisions for regulatory credit risk)

□ Regulatory intervention

Model review and validation

Dillar 2 review of non regulatory Pillar 1 models

Capital charge

MODELING « CYCLE » SHOULD INTEGRATE VALIDATION STEPS AND "BACKTEST" LOOPS

□ Internal practices issues

- Recognize "ex ante" and identify model limitations and range of result validity with confidence interval assessement
- Managing complexity and model limitations through multiple expertise
- Implementation of model validation governance
- Maintain in long term strong expertise
- Pay attention to "over engineering" consequences
- Focus on key assumptions consequences
- Develop Senior Management Buy In
- ■../..

□ Financial and banking systems issues

- Pooling of interest versus competition
- Transparency versus competition
- Diversity versus standardization
- Endogenous risk transmission
- "Market" capability to integrate alternative framework for pricing models
- "Systemic risk "amplifications (ex pro cyclicality and Point In Time versus Through The Cycle assumptions, ..)

Modeling challenges

- Tractability of complexity in modeling
- Alternative models to standard assumptions framework
- Error measurement modeling
- Risk perception of extreme events and subjectivity
- Other risk "areas" for modeling

- 1. Emanuel Derman 1996: Model Risk Goldman Sachs Quantitative Strategies Research notes
- 2. Jan Dhaene & al 2009 : Optimal Capital Allocation principles
- 3. BIS 2009 WP 16 Findings on the interaction of market and credit risk
- 4. BIS 2009 WP 280 : Measuring portfolio credit risk correctly : Why parameter uncertainty matters
- 5. BIS 2007 WP 230 : Modelling and calibration errors in measures of portfolio credit risk
- 6. BIS 2009 : Observed range of practices in key elements of Advanced Measurement Approaches
- 7. BIS 2004 : CDO rating methodology. Some thoughts on model risk and its implications
- 8. FED Boston 2006 : A tale of tails. An empirical analysis of Loss Distribution Models for estimating operational risk capital
- 9. R. Rebonato : Theory and practice of Model Risk Management
- 10. J. Danielsson 2008 : The paradox of models
- 11. D. Duffie 2007 Innovations in credit risk transfer: Implications for financial stability
- 12. M. Gordy 2000 : A comparative anatomy of credit risk models
- 13. M. Gordy & Howells 2006 : Procyclicality in Basel 2 . Can we treat the disease without killing the patient ?
- 14. Kashyap & Stein 2003 : Cyclical implications of Basel 2 Capital standards
- 15. FSA 2009 : the Turner Review . A regulatory response to the global financial crisis
- 16. P.Slovic & E Weber 2002 : Perception of risk posed by extreme events
- 17. T.Kato & T Yoshiba 2000 : Model risk and its control
- 18. CRMPG III Report 2008 : Containing systemic risk, the Road to reform
- 19. JP Landau 2008 Banque de France. Extreme events in finance some reflexions
- 20. Artzner & al. 1999 : Coherent measures of risk
- 21. M. Denault 2001 : Coherent allocation of risk capital