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Financial stability and systemic risk

The recent financial crisis has simultaneously underlined the

importance of contagion and systemic risk and the lack of adequate

indicators for measuring and monitoring them.

Control over systemic risk has been the main motivation of the

recent bailouts of large financial institutions

Regulators have had great difficulties anticipating the impact of

defaults partly due to a lack of visibility and lack of relevant

indicators on the structure of the financial system

Policy has been guided by “too big to fail” principle

Availability of better indicators of systemic risk would have helped

outline a clearer regulatory and crisis management policy.
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A need for indicators of systemic impact

∙ US Treasury has called “for new legislation granting additional
tools to address systemically significant financial institutions”

(Mar 2009).

∙ The new legislation ” would cover financial institutions that
have the potential to pose systemic risks to our economy”.

∙ “In determining whether to use the program for an

institution,Treasury may consider the extent to which

destabilization of the institution could threaten the viability of

creditors and counterparties exposed to the institution whether

directly or indirectly.”

∙ What makes an institution systematically significant”?
∙ Need for indicators of systemic impact of the failure of a
financial institution
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OBJECTIVES

∙ A quantitative approach for measuring the systemic impact of
the failure of a large financial institution: the Systemic Risk

Index

∙ This index combines the effects of
– common market factors affecting defaults

– default contagion via counterparty risk

– indirect contagion via credit default swaps

∙ use this measure of systemic risk on empirical data and
simulated network structures to study the influence of

counterparty exposures structure, credit default swaps and

clearinghouses on systemic risk in the banking system.
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Systemic vs marginal risk

∙ Bank regulation has focused on the risk of individual financial
institutions (VaR) to determine capital requirements

∙ Capital should be sufficient to cover typical losses of large
magnitude

∙ Value at Risk measures how much an institution can be
harmed by market moves: it is concerned with the marginal

loss distribution of its portfolio

∙ Systemic risk is concerned with how much the financial system
can be harmed by the failure of the institution

∙ It is concerned with the joint distribution of the losses of all
market participants and requires modeling how losses are

transmitted through the financial system
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LTCM

∙ Daily VaR= 400 million $ in Aug 1998, Size= 4 billion$.
∙ Amaranth: size = 9.5 billion USD.
∙ The default of Amaranth hardly made headlines: no systemic
impact.

∙ The default of LTCM threatened the stability of the US

banking system → Fed intervention

∙ Reason: LTCM had many counterparties in the world banking

system, with large liabilities/exposures.

∙ Point 1: Systemic impact/ default contagion is not about the

size of a firm

∙ Point 2: a firm’s portfolio can be “well-hedged” (low market

risk using conventional measures) but the firm can be a source

of large systemic risk
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The network approach to contagion modeling

We model a network of counterparty relations as a weighted

directed graph where

∙ 𝑛 vertices (nodes) 𝑖 ∈ 𝑉 represent financial market

participants: banks, funds, corporate borrowers and lenders,

hedge funds, insurers, monolines.

∙ (directed) links represent counterparty exposures: 𝐿𝑖𝑗 is the

the (market) value of liabilities of 𝑖 towards 𝑗, 𝐿𝑗𝑖 is the

exposure of 𝑖 to 𝑗.

∙ In a market-based framework 𝐿𝑗𝑖 is understood as the fair

market value of the exposure of 𝑖 to 𝑗.

∙ Each institution 𝑖 disposes of a capital buffer 𝑐𝑖 for absorbing

market losses. Proxy for 𝑐𝑖: Tier I+II capital minus required

capital for non-banking assets.
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∙ Solvency condition: 𝑐𝑖 +
∑

𝑗 𝐿𝑗𝑖 −
∑

𝑗 𝐿𝑖𝑗 > 0

∙ Capital absorbs first losses. Default occurs if Loss(i)> 𝑐𝑖.

Assets Liabilities

Interbank assets Interbank liabilities
∑

𝑗 𝐿𝑗𝑖

∑
𝑗 𝐿𝑖𝑗

Other assets Capital

𝐴𝑖 𝐶𝑖

Table 1: Stylized balance sheet of a bank.
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Figure 1: Brazilian interbank network (Cont & Bastos 2009).

9



Contagion in banking networks: theory

Humphrey (1987) Allen & Gale (2000) Kiyotaki & Moore

Rochet & Tirole (1996) Freixas et al (1997) Nier et al (2007)...

Theoretical results on the influence of network structure on

contagion have been obtained only for a limited number of highly

stylized structures of interbank markets, chosen more for analytical

convenience than for their resemblance to real world banking

systems.

These studies suggest however that the magnitude of contagion

depends on

the size of interbank exposures relative to capital

the precise pattern of such linkages (network structure).
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Contagion in banking networks: empirical studies

Empirical studies on interbank networks by central banks:

∙ Sheldon and Maurer (1998) for Switzerland
∙ Furfine (1999) for the US
∙ Upper and Worms (2000) for Germany Wells (2002) for the UK
∙ Boss, Elsinger, Summer and Thurner (2003) for Austria
∙ Mistrulli (2007): Italy
∙ DeGryse & Nguyen : Belgium, Soramaki et al (2007): Finland

examine by simulation the impact of single or multiple defaults on

bank solvency in absence of other effects (e.g. market shocks).

Mostly focused on payment systems (FedWire, etc)
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The small magnitude of such “domino” effects has been cited as

justification for ignoring contagion e.g. in the Geneva Report.

Such simulation ignore the impact of correlated market shocks on

bank balance sheets.

Many studies on domino effects are not based on actual exposures

but estimate exposures from balance sheet data using maximum

entropy methods (Boss et el, Elisgner et al) which result in

distributing as uniformly as possible liabilities among

counterparties. This method can lead to underestimation of

contagion effects.
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∙ “Market clearing equilibrium” (Eisenberg & Noe (2001)
Elsinger et al (2005)) amounts to computing cash flows

assuming simultaneous liquidation of all market participants

positions. Defaults are then generated endogenously.

Not a realistic situation: defaults are not generated by global

market clearing but may appear as exogenous shocks to capital

reserves of banks.

∙ Portfolio approach (Lehar 2005, Elsinger et al 05): consider the
financial system as a portfolio, simulate its loss distribution and

compute a risk measure (Value at Risk) for this “portfolio”.

Such global measures do not isolate the impact of a single

default or compute the systemic impact of a given institution.

∙ Finally, these studies have ignored the impact of credit risk
transfer instruments such as credit default swaps on systemic

risk.
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Brazil’s banking system: a directed scale-free network

Joint work with Edson BASTOS, Banco Central do Brasil.

∙ Data set of all consolidated interbank exposures (incl. swaps)+
Tier I and Tier II capital (2007-08).

∙ 𝑛 ≃ 100 institutions (holdings), ≃ 1000 counterparty relations
∙ Average number of counterparties (degree)= 7
∙ Heterogeneity of connectivities: in-degree (number of debtors)
and out-degree (number of creditors) have Pareto distributions

with exponents 𝛼𝑖𝑛, 𝛼𝑜𝑢𝑡 between 2 and 3.

∙ Exposure sizes very heterogeneous: heavy tailed Pareto
distribution with exponent between 2 and 3.

∙ These distributions are stable across time
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Network formation by preferential attachment

Graphs with Pareto/ power-law degree distributions, called

scale-free networks, are observed to emerge in various

applications, most notably the structure of the Internet and social

networks (Albert and Barabasi 2002, Bollobas Borgs, Chayes,

Riordan 2003)

The presence of such power laws can be explained in terms of a

preferential attachment model for counterparty choice.

The idea is that a new firm entering the financial system is more

likely to establish financial links with highly connected firms.
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A directed scale-free network model

Each time a new node 𝑣 is added,

∙ with probability 1/2 > 𝑝 > 0, add a link from 𝑣 to an existing

vertex 𝑤 chosen with probability

𝑑𝑒𝑔in(𝑤) + 𝛿in∑∣𝐺(𝑡)∣
𝑖=1 (𝑑𝑒𝑔in(𝑖) + 𝛿in)

. (1)

∙ With probability 𝑝, add a link from an existing vertex 𝑤 to 𝑣,

where 𝑤 is chosen with probability

𝑑𝑒𝑔out(𝑤) + 𝛿out∑∣𝐺(𝑡)∣
𝑖=1 (𝑑𝑒𝑔out(𝑖) + 𝛿out)

. (2)

∙ With probability 1− 2𝑝, link an existing vertex 𝑤1 to an

existing vertex 𝑤2, where 𝑤1, 𝑤2 are chosen independently, 𝑤1

with probability (2) and 𝑤2 with probability (1).

∙ Allocate a random exposure to each link.
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Property 1 (Degree distributions). As 𝑁 → ∞ the proportion of

nodes with in (rnesp. out)-degree 𝑘 converges to a distribution

𝑞in(𝑘) (resp. 𝑞out(𝑘)) with Pareto tails:

1

𝑁
#{𝑣 ∈ [𝐺𝑁 ], 𝑖𝑛𝑑𝑒𝑔(𝑣) = 𝑘}𝑁→∞→ 𝑞in(𝑘) 𝑎.𝑠. (3)

1

𝑁
#{𝑣 ∈ [𝐺𝑁 ], 𝑜𝑢𝑡𝑑𝑒𝑔(𝑣) = 𝑘}𝑁→∞→ 𝑞out(𝑘) 𝑎.𝑠. (4)

where 𝑞in(𝑘)
𝑘→∞∼ 𝐶in

𝑘𝛼in
𝑞out(𝑘)

𝑘→∞∼ 𝐶out

𝑘𝛼out
(5)

with 𝛼in =
2− 𝑝+ 2𝑝𝛿in

1− 𝑝 𝛼out =
2− 𝑝+ 2𝑝𝛿out

1− 𝑝 (6)

Example: 𝑝 = 0.1, 𝛿𝑖𝑛 = 0, 𝛿𝑜𝑢𝑡 = 4.45 yields the tail exponents

𝛼in = 2.1 𝛼out = 3.1
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Measuring the systemic impact of a default

Objective: quantify the losses generated across the network by the

initial default of a given financial institution.

We consider two mechanisms which contribute to contagion in the

network:

1. default contagion across counterparty networks

2. correlated, market shocks
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Mechanism 1: market-induced credit event

If a bank 𝑖 faces unexpected market loss (e.g. writedown of assets

resulting from large sudden market moves), it can default if the loss

exceeds its capital 𝑐𝑖

Such losses can arise from

∙ Exogenous market shocks: this is modeled by applying
correlated shocks 𝜖𝑖 across balance sheets

𝑐𝑖 
→ max(𝑐𝑖 + 𝜖𝑖, 0)

∙ Margin calls or payments on bilateral contracts to another
market participant 𝑗 ex. credit default swaps triggered by

credit events in the network.

𝑐𝑖 
→ max(𝑐𝑖 − Π𝑖𝑗 , 0)
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Mechanism 2: contagion via counterparty risk

The default of a market participant 𝑖 affects its counterparties in

the following way over a short term horizon

∙ Debts are collected from debtors at liquidation:

∀𝑗, 𝐿𝑗𝑖 → 0

∙ Creditors loses a fraction (1−𝑅) of their exposure.
Loss is first absorbed by capital: 𝑐𝑗 → min(𝑐𝑗 − (1−𝑅)𝐿𝑖𝑗 , 0).

This leads to a writedown of (1−𝑅)𝐿𝑖𝑗 in the balance sheet of

𝑗, which can lead to default/ credit event for 𝑗 if

𝑐𝑗 < (1−𝑅)𝐿𝑖𝑗

Typically recovery 𝑅 ≃ 0 in the short term.
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Default cascades

Default of a market participant 𝑖 incurs losses to its counterparties.

These losses may lead the counterparties to default and generate a

“cascade” of defaults.

Definition 1 (Default cascade). Given exposures (𝐿𝑖𝑗), capital

buffers (𝑐𝑖), and recovery rates (𝑅𝑖), we define a sequence

𝐷𝐴
0 ⊂ 𝐷𝐴

1 ⊂ ⋅ ⋅ ⋅ ⊂ 𝐷𝐴
𝑛

of defaults generated by the initial default of a subset 𝐴 ⊂ 𝑉 of

nodes via:

𝐷𝐴
0 = 𝐴 ∀𝑘 ≥ 1, 𝐷𝐴

𝑘 = {𝑖 𝑠.𝑡. 𝑐𝑖 <
∑

𝑗∈𝑁+
𝑖

∩
𝐷𝐴

𝑘−1

(1− 𝑅𝑗)𝐿𝑗𝑖} (7)

This sequence is called the default cascade generated by 𝐴.
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Contagion stops at round 𝜏(𝐴) when counterparties can bear the

losses and no more defaults occur

𝜏(𝐴) = inf{𝑡 ≥ 0, 𝐷𝐴
𝑡 = 𝐷

𝐴
𝑡−1} ≤ 𝑁

𝜏(𝐴) is the length of the cascade generated by the initial defaults 𝐴.
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Default Impact

We define the “default impact” 𝐷𝐼(𝐴) of a group 𝐴 of institutions

as the total loss (in $) in the default cascade generated by the

initial default of all institutions in 𝐴.

Definition 2. The Default Impact 𝐷𝐼(𝐴) of a set 𝐴 ⊂ 𝑉 of nodes

is the total loss to the financial system along the cascade generated

by initial default of all nodes in 𝐴:

𝐷𝐼(𝐴) =
∑

𝑖∈𝐷𝐴
𝜏(𝐴)

(𝑐𝑖 +
∑

𝑖∈𝑉 ∖𝐷𝐴
𝜏

𝐿𝑖𝑗)

The default impact of an institution 𝑖 ∈ 𝐼 is defined as

𝐷𝐼(𝑖) = 𝐷𝐼({𝑖}).
𝐷𝐼(𝑖) is a worst-case loss estimate and does not involve estimating

the default probability of 𝑖.

Analogy w/ “Influence functions” in social networks.
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Default contagion during a crisis: combining
market risk and contagion effects

Default contagion during a crisis: evaluate impact of a large default

in presence of (correlated shocks) to capital structure across

institutions

1. Network structure (𝑐(0), 𝐿) is given at 𝑡 = 0

2. Market risk of bank portfolios is simulated using a factor

model: (correlated) downward shocks are applied to balance

sheets of different institutions

𝑐𝑗(𝑇 ) = 𝑐𝑗(0) + 𝜖𝑖 (𝜖𝑖, 𝑖 ∈ 𝐼) ∼ 𝐹

3. We now consider default of 𝑖 and compute the Default Impact

𝐷𝐼(𝑖) in the “stressed market” environment characterized by

(𝑐(𝑇 ), 𝐿)

𝐷𝐼(𝑖) is now a random variable depending on 𝑐(𝑇 ).
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Ex: Gaussian one-factor model 𝜖𝑖(𝑇 )

𝑐𝑖(𝑇 ) = 𝐹
−1
𝑖 (𝑁(𝑋𝑖)) 𝑋𝑖 = (

√
𝜌𝑍0 +

√
1− 𝜌𝑍𝑖)

where 𝑍𝑖 are IID N(0,1).

Ex: a heavy-tailed factor model 𝜖𝑖(𝑇 )

𝑐𝑖(𝑇 ) = 𝐹
−1
𝑖 (𝐺𝑖(𝑋𝑖)) 𝑋𝑖 = (

√
𝜌𝑍0 +

√
1− 𝜌𝑍𝑖)

where 𝑍𝑖 are 𝛼-stable with 𝛼 = 1.

Lehar (2005) gives estimates for volatilities and correlations of

assets of international banks: 𝜌 ∈ [0.2, 0.6].
More generally one can use other factor model commonly used in

portfolio default risk simulations.
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Systemic Risk Index of a financial institution

We now combine the

(deterministic) computation of Default Impact and the

(stochastic) simulation of correlated defaults at horizon 𝑇 and

define the Systemic Risk Index of the institution 𝑖 at a horizon 𝑇 as

𝑆(𝑖) = 𝐸[𝐷𝐼(𝑖)∣𝑐𝑖(𝑇 ) ≤ 0]

It is the expected loss in the cascade generated by the failure of 𝑖,

given that at the time of failure the capital buffer of 𝑖 has been

wiped out by market shocks.

This indicator combines market-based measures of default

probability and correlation/dependence with a network-based

measure of default contagion.
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Systemic Risk index as a risk measure

Similarly we can define the Systemic risk contribution of a set

𝐴 ⊂ 𝑉 of financial institutions: it is the expected loss to the

financial systems generated by the joint default of all institutions in

𝐴:

𝑆(𝐴) = 𝐸[𝐷𝐼(𝐴)∣∀𝑖 ∈ 𝐴, 𝑐𝑖(𝑇 ) ≤ 0]

𝑆 then defines a set function

𝑆 : 𝒫(𝑉 ) 
→ ℝ

The Systemic Risk Index can be viewed, from the point of view of

the regulator, as a macro-level “risk measure”.
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Simulation experiments

We generate a directed scale-free network with 𝑛 = 400 nodes with

Pareto distributions for degree and exposure sizes which match the

empirical properties of Brazilian and Austrian networks.

∙ Heterogeneity of connectivities: in/ out-degree has Pareto
distribution with exponents 2.1 and 3.

∙ Exposures 𝐿𝑖𝑗 are IID with a Student distribution with 𝜈 = 1.9

degrees of freedom (→ Pareto tail)

We consider two different situations for the capital:

∙ Limit on leverage: 𝑐𝑖 ≥ 𝛼
∑

𝑗 𝐿𝑖𝑗 where 𝛼 = minimal capital

ratio

∙ Capital computed according to Basel II rules: may allows for
large/unlimited leverage
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Default impact is computed for each node.

Systemic risk index is computed by Monte Carlo using an

importance sampling method for efficiently sampling joint default

events

To quantify the impact of imposing a maximal leverage ratio

without increasing total amount of available capital reserves we

conduct an experiment where the the ratio is fixed in a way that

the total amount of capital reserves summed across institutions is

the same in both cases.
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What makes a node systemically important?

Node Systemic In degree Out degree Weighted Weighted Leverage

risk index in degree out degree

13 0.18 6 8 47.90 107 2327.0 107 4.05

108 0.15 0 5 0 0.13 107 0

30 0.12 22 28 117.29 107 1123.5 107 0.12

37 0.09 2 1 0.86 107 0.86 107 0.08

117 0.07 0 1 0 0.30 107 0

Network 0.06 8.56 8.56 6.07 108 6.07 108 0.81

Table 2: Analysis of the five institutions with highest systemic risk

index: Brazilian banking system.
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Covariate Coefficient Standard Error p-value

max(𝑆𝐼𝒩 ) -0.0563 0.0406 0.1661

max(𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝒩 ) 0.0012 0.0053 0.8231

max(𝑆𝐼𝒩 ∗ 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝒩 ) 0.0084 0.5599

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 0.0027 0.0089 0.7568

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 ∗𝑚𝑎𝑥(𝑆𝐼𝒩 ) 0.0143 0.0015 4.5e-19

max(𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒𝒩 ) 1.3 e-4 3.2e-4 0.68

Table 3: Stepwise regression selects outdegree×max(𝑆𝐼𝒩 ) where
𝑆𝐼𝑁 is the systemic risk index for the counterparties) as the most

significant variable. Not only the connectivity (out degree) matters

but also the systemic risk index of its neighbors.
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The systemic impact of an institution is not posssible to determine

just given that institutions aggregate portfolio risk (VaR etc.). It

depends primarily on its counterparties, exposure to counterparties,

their degree of leverage etc: i.e. its environment in the

network. Good indicator of the degree of systemic importance of a

financial institution seems to be

max
𝑗

𝐿𝑖𝑗

𝑐𝑗
= max

Counterparties exposed to i

Exposure of j to i

𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑏𝑢𝑓𝑓𝑒𝑟 𝑜𝑓 𝑗
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Figure 17: Systemic risk index versus (out degree * Maximum Sys-

temic risk index among counterparties)
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Analysis of cascades in large networks

We describe the topology of a large network by the joint

distribution 𝜇𝑛(𝑗, 𝑘) of in/out degrees and assume that 𝜇𝑛 has a

limit 𝜇 when graph size increases in the following sense:

1. 𝜇𝑛(𝑗, 𝑘)→ 𝜇(𝑗, 𝑘) as 𝑛→ ∞: the proportion of vertices of
in-degree 𝑗 and out-degree 𝑘 tends to 𝜇(𝑗, 𝑘)).

2.
∑

𝑗,𝑘 𝑗𝜇(𝑗, 𝑘) =
∑

𝑗,𝑘 𝑘𝜇(𝑗, 𝑘) =: 𝑚 ∈ (0,∞) (finite expectation
property);

3. 𝑚(𝑛)/𝑛→ 𝑚 as 𝑛→ ∞ (the average degree tends to 𝑚).
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A criterion for robustness with respect to contagion

We call a node fragile if either prone to default if either one or

two of their counterparties default: its capital buffer is lower than

the sum of the two largest exposures.

Let 𝑞(𝑑+, 𝑑−) be the proportion of fragile nodes in the network

with in-degree 𝑑+ and out-degree 𝑑−. This quantity is empirically
accessible to the regulator.

Proposition 1 (Amini, Cont, Minca 2009). If

𝐸[Degree] < 𝐸𝜇[𝑑+(𝑖)𝑑−(𝑖) 𝑞(𝑑+(𝑖), 𝑑−(𝑖))] (8)

the default of a single node can trigger a cascade default of a

positive fraction of the financial system.

If

𝐸[Degree] > 𝐸𝜇[𝑑+(𝑖)𝑑−(𝑖) 𝑞(𝑑+(𝑖), 𝑑−(𝑖))] (R)

the cascade generated by any finite set of initial defaults remains

contained: its size is 𝑜(𝑛) as 𝑛→ ∞.
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E[.] denotes here the expectation with respect to the joint

distribution 𝜇(𝑑+, 𝑑−) of in-/out-degrees in the large network.

Robustness condition:

Average degree >
1

𝑛

∑

𝑖

[𝑑+(𝑖)𝑑−(𝑖) 𝑞(𝑑+(𝑖), 𝑑−(𝑖))] (9)
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Credit Default swaps

∙ Credit default swaps are (off balance sheet) OTC contracts
involving A selling protection to B on default of C.

∙ Upon default of C, A has to pay to B the loss given default,
proportional to the notional of the CDS contract.

∙ June 2008: total interbank assets totaled ≃ 39 trillion USD in

June 2008

Notional amount of single name credit default swaps = 38

trillion USD.

∙ If B already has exposure to C then the CDS has the effect of
replacing the exposure 𝐿𝐵𝐶 by an equivalent exposure 𝐿𝐵𝐴

upon default of 𝐶. This modifies the network topology upon

default of C but does not increase the number of links.

52



∙ In the case of speculative CDS i.e. when B has no exposure to

C, default of C then has the effect of triggering a large

exposure of B to A: a new link with large weight appears in

the network. Typically C may be “distant” from A and B in

the network.

∙ In the network terminology, they can be seen as contingent
long-range links/shortcuts which appear in the graph when a

default occurs.

∙ Adding a small proportion of CDS contracts in the networks

can drastically change the topology of the network.

∙ Once the CDS are triggered the network behaves like a “small
world”.
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Figure 18: Dealer to dealer network: the 15 largest CDS dealers

represent an almost complete network representing 61 % in terms of

outstanding CDS notional

54



1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

10
0.2

10
0.4

10
0.6

10
0.8

10
9

10
10

Figure 19: Rank diagram of largest CDS exposures of AIG in Sept

2008 exhibits an exponential tail.
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Figure 20: Default of a firm on which a lot of CDS protection has

been sold can strongly affect exposures across the network. Blue:

counterparty relations. Red: counterparty CDS exposures resulting

from the default of a large name.

56



0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20
% increase in total exposures due to CDS trigger

Figure 21: Increase in exposure sizes due to CDS triggered upon

default of a large name.
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Systemic impact of Credit Default swaps

∙ Simulation experiment: introduce a network of CDS contracts
on top of an existing network of liabilities/exposures.

∙ total CDS notional = 20% of balance sheet sizes

∙ We vary the ratio of speculative/naked CDS to see the effect.
∙ Protection selling is limited to ‘large’ institutions (e.g. 100
largest in balance sheet size)

∙ CDS notionals have an exponential distribution
∙ Underlyings of CDS are ‘large’ institutions (index names)
∙ If i has sold protection to j on k for a notional 𝑁𝑖𝑗 then, upon

default of k, i pays to j 𝑁𝑖𝑗(1−𝑅), absorbing a loss:
𝑐𝑖 → 𝑐𝑖 −𝑁𝑖𝑗(1−𝑅)
If 𝑐𝑖 < 𝑁𝑖𝑗(1−𝑅), the protection seller defaults.
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Do credit default swaps increase or decrease systemic risk?
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Figure 22: Effect of CDS on systemic risk index: total CDS notional

= 20% of balance sheet sizes, 50% of CDS are speculative.
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Figure 23: Effect of CDS on probability density of systemic risk index

(kernel estimator): total CDS notional = 20% of balance sheet sizes,

50% of CDS are speculative.
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Figure 24: Names on which a large notional of CDS has been written

can have a large systemic risk index as a result of the introduction

of CDS markets.
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Central counterparties and CDS clearinghouses

∙ Central counterparties (CCP) have been proposed as a possible
solution to counterparty risk and systemic risk management in

CDS and other OTC markets.

∙ Replace bilateral CDS trades between counterparties by two
symmetric trades between CCP and each counterparty.

∙ Insulates counterparties from each others default: mitigation of

counterparty risk, a major concern since 2008

∙ By centralizing information and supervision can facilitate
supervision and transparency.

∙ Mitigates moral hazard: intervention for “bailing out” a CPP
is less problematic than bailing out individual banks

∙ Does a central counterparty reduce systemic risk?
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Effect of a CDS clearinghouse

The effect of a central counterparty can be modeled by adding a

node to the CDS network and redirecting all CDS contracts into

this node.

For the central counterparty, the role of the capital buffer is played

by margin deposits + a “Guarantee fund”. Each clearing

participant contributes to a Guarantee fund.

The role of this fund is to reduce systemic risk by insulating

clearing participants from the risk of the default of another clearing

participant.

In accordance with BIS recommendations, the Guarantee Fund

should cover losses associated with the simultaneous default of the

largest clearing member in the event of deteriorating market

conditions.
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Figure 25: The Clearinghouse effect: Impact of a central counter-

party on systemic risk index of financial institutions.
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Figure 26: The Clearinghouse effect: Impact of a central counter-
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of the systemic risk index across institutions.
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Implementation and regulatory implications

∙ In some countries (Austria, Brazil,..) this data is already
available to regulators and our methodology can be

implemented at the level of the national regulatory body.

∙ In all countries banks and various financial institutions are
required already to report risk measures (VaR, etc.) on a

periodical basis to the regulator.

∙ Our approach would require these risk figures to be a
disaggregated across large counterparties: banks would report a

VaR/risk figure for exposures to each large counterparty.

∙ Many large investment banks already compute such exposures
on a regular basis so requiring them to be reported is not likely

to cause a major technological obstacle.
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Conclusions

∙ Measures of systemic risk need to account for correlation in

market shocks across firms + contagion effects due to

counterparty exposures. Focusing only on one of these two

leads to an underestimation

∙ Network models provide useful insight into default contagion

and systemic risk.

∙ We have a proposed a measure of the systemic impact of a (set
of) institutions taking into account

1. its connectivity with other market participants and the

magnitude of its exposures: the Default Impact 𝐷𝐼(𝑖)

2. the above + allowing for correlated market shocks across

institutions during a crisis: the Systemic Risk Index 𝑆(𝑖).
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∙ The systemic risk impact of the failure of an institution may
have little correlation with size or conventional risk measures of

its portfolio. It also depends on network properties: centrality,

connectivity, and fragility -as measured by leverage of its

neighbors/counterparties

∙ These criteria may be used as a tool in surveillance of systemic
risk and for macro-prudential regulation.
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∙ Actual capital, via the leverage coefficient, not risk-weighted
capital seems to be a key determinant systemic risk.

∙ Imposing a cap on leverage is an effective mechanism for

reducing default contagion and the probability of large

systemic losses.

∙ Too big to fail/ Size is not the right criterion for determining
systemic importance in absence of a maximal leverage ratio.

∙ Nodes with high systemic impact seem to be those who are

major counterparties to large but fragile (high-leverage) nodes.

∙ Introduction of credit default swaps can increase default
impact and systemic risk impact of large institutions

∙ Presence of a large notional volume of speculative credit
default swap can distort the relation between systemic risk

impact and firm properties (size, connectivity).
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∙ The network approach allows to analyze in a meaningful way
the systemic impact of credit default swaps. In particular it

illustrates that credit default swaps introduce contingent

long-range links between institutions that can increase the

range of contagion.

∙ The network approach allows a meaningful cost/benefit
analysis of the role of clearinghouses or central

counterparties in mitigating systemic risk.

∙ Systemic risk involves understanding structure and dynamics of
complex financial networks. Efficient methods for large scale

simulation of realistic network models provide better insight

than equilibrium models based on simplistic/homogeneous

network structures.
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